So facing data points great than 5000, we use Kolmogorov-Smirnov tests.
The code as following:
normalityTest <- function(x, group=NULL, alpha=0.05){
if(is.null(group)){
x <- na.omit(x)
if(all(x==x[1]) | length(x)<5 ){
return(FALSE)
} else if (length(x) > 5000){
return(ks.test(x, "pnorm", mean(x), sd(x))$p.value>alpha)
} else {
return(shapiro.test(x)$p.value>alpha)
}
} else {
ng <- as.character(unique(group))
for(ng.ind in 1:length(ng)){
tmp <- x[group==ng[ng.ind]]
tmp <- na.omit(tmp)
if(all(tmp==tmp[1]) | length(tmp)<5){
stop(return(FALSE))
} else {
if(length(tmp) > 5000){
p <- ks.test(x, "pnorm", mean(x), sd(x))$p.value
} else {
p <- shapiro.test(tmp)$p.value
}
if(p < alpha) stop(return(FALSE))
}
}
return(TRUE)
}
}